POLYUNSATURATED FATTY ACIDS IN LEPROSY

A. M. Dhople, M.Sc.

AND N. G. Magar, M.Sc., Ph.D.

Department of Biochemistry, Institute of Science

Bombay, India

INTRODUCTION

Experiments of Burr and Burr (13) clearly established that the complete exclusion of fat, and thereby the polyunsaturated fatty acids—unsaturated fatty acids with more than one double bond (essential fatty acids, EFA)—from the diet slowly produces a definite disease. Much work has been done on the relation between EFA and human blood of different age groups, of different dietary habits and of different diseases.

Sinclair (14) found that coronary heart disease may be due to dietary deficiency of the EFA, linoleic and arachidonic acids being most important. There is less absolute proof that EFA are required more by man than in the case of other species. Brown and others (1) demonstrated a decrease of plasma polyunsaturated fatty acids in adult man during a prolonged low fat diet. Page and associates (9) stated that the occurrence of atherosclerosis—civilized man’s greatest killer—is focal, and that the presence of EFA (lipids in general) are the essential vital substances to prevent it. Sinclair (14) reported that deficiency of polyunsaturated fatty acids may increase the susceptibility to noxious agents, including the carcinogenic effects of x-ray irradiation and chemical carcinogens. They also pointed out that in patients with anemia, total fatty acids show higher values than in normal subjects, as is also the case of tuberculosis patients. Hansen (1) reported that in infants on a low fat diet there develops a characteristic eczema which rapidly responds when fat is added to the restricted regimen. Faber and Roberts (12) and Cornbleet (4) correlated the appearance of eczematous symptoms in adult subjects with the reduction in the level of EFA in the blood, and especially with that of linoleate and arachidonate.

Thus it will be seen that there exists a definite relationship between the level of polyunsaturated fatty acids of the blood with different diseases. The present work was therefore undertaken to study the level of polyunsaturated fatty acids in different types of leprosy patients of different age groups.
The patients were classified into four different classes: (1) lepromatous, (2) tuberculoid major, (3) tuberculoid minor, and (4) mixed/classe. Each of these four classes were further divided into four different age groups, ranging from 15 years upward. All the patients were from the inpatient section of Aesworth Leprosy Home, Wadala, Bombay, who were all vegetarians and of the low income group.

From each of the subjects under consideration, in the postabsorptive state (8-10 hours), 10 cc. of blood was drawn from the antecubital vein with a dry syringe. The blood was allowed to clot, and the supernatant liquid was centrifuged and the clear serum was used for analysis. Three cc. of serum was used in each case. The fatty acids were extracted from the serum by the method of Weiss and Hansen (11), first precipitating the proteins with a 3:1 alcohol-ether mixture, and then extracting the fatty acids from the supernatant liquid by repeated saponifications, acidifying in fatty acids, and dissolving them in petroleum ether (40°-60°). The fatty acids were isomerised by the alkali isomerisation method of Herb and Riemenschneider (7). The 21 per cent KOH-glycerol reagent was prepared by heating 28 gm. of 85 per cent KOH in 100 gm. of ethylene glycol (Merck) to 180° C and cooling to room temperature. The reaction tube was 1 x 10 cm in size, and the weighing cups 8 mm. in diameter and 6 mm. in height, both made of pyrex glass. The spectrosopic methyl alcohol was prepared first by refluxing the methyl alcohol (Merck) with Zn-dust and KOH, and then distilling it. All dilutions of isomerised mixtures were made with the spectrosopic methyl alcohol, and readings were taken on the Beckman-DU spectrophotometer.

Equations for calculating percentages of acids.—Constants for acids other than hexanoic were taken from the data of Herb and Riemenschneider (7) and constants of hexanoic were taken from Hammond and Lindsberg (8).

RESULTS AND DISCUSSION

Polyenoic fatty acids in the serum of the patients of lepromatous type.—The distribution of dienoic, trienoic, tetraenoic, pentaenoic and hexaenoic acids in the total fatty acids of the serum of the lepromatous patients of various age groups is shown in the first section of Table 1.

Age group 15 to 24 years: The mean value for total fatty acids is 304 ± 29.55 mgm. per 100 cc. of serum. Dienen acids constitute 22.87 ± 4.52 per cent, trienoic acids 35.44 ± 0.99 per cent and tetraenoic acids 4.56 ± 3.67 per cent. The average percentages of pentaenoic and hexaenoic acids with standard deviations are 1.30 ± 0.17 and 1.18 ± 0.62, respectively.

Age group 25 to 34 years: The mean value for total fatty acids is 312 ± 17.00 mgm. per 100 cc. of serum, which is found to be very high as compared to normal subjects (293 mgm.). The percentages of constituting polyenoic fatty acids also indicate change from normal subjects. Except the trienoic acids, all other percentages of polyenoic fatty acids are lower than those of normal subjects. In the case of trienoic acids, it is nearly double the normal titer. The mean values of percentages of polyenoic fatty acids are (values in parentheses are of normal subjects): dienoic, 21.06 ± 1.66 (21.45); trienoic, 4.47 ± 0.89 (2.23); tetraenoic, 2.83 ± 0.47 (6.80); pentaenoic, 0.53 ± 0.11 (1.06); and hexaenoic, 0.44 ± 0.29 (2.55).

Age group 35 to 44 years: The mean value of total fatty acids is

Table 1. Polyenoic fatty acids in the serum of patients of various types.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Total fatty acids*</th>
<th>Polyenoic fatty acids in per cent of total fatty acids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total fatty acids</td>
<td>Dienen</td>
</tr>
<tr>
<td>Lepromatous type</td>
<td>328 ± 17.00</td>
<td>23.67 ± 2.12</td>
</tr>
<tr>
<td>Major tuberculoid group</td>
<td>292 ± 13.87</td>
<td>23.06 ± 2.05</td>
</tr>
<tr>
<td>Minor tuberculoid group</td>
<td>310 ± 11.60</td>
<td>22.77 ± 1.33</td>
</tr>
<tr>
<td>Macrophilic group</td>
<td>328 ± 17.00</td>
<td>22.67 ± 1.53</td>
</tr>
</tbody>
</table>

* Milligrams in 100 cc. of serum.

29, 2 Dhole and Magar: Polyunsaturated Fatty Acids in Leprosy
In general, in this class of the disease, it can be seen that the values of total fatty acids in the serum increases with the increase in age. The same is the case with the values of the dienoic, tetraenoic and pentaenoic acids. There is no such trend with the trienoic and hexaenoic acids. The values of total fatty acids are higher in this class, as compared to normal subjects, but the values of percentages of polyenoic acids are lower than normal, the only exception being trienoic acids. In all age groups, as normal subjects, the values decrease from dienoic to hexaenoic.

Major tuberculoid cases.—The values of total fatty acids in 100 cc. of serum of the major tuberculoid cases, with the percentages of their constituting polyenoic fatty acids, are shown in the second section of Table 1. In this class the values of total fatty acids increase and the percentage values of dienoic acids decrease with the increase of age, thus showing similarity to the trend in normal subjects. That of the percentage values of trienoic acids is somewhat similar to that in the lepromatous type. In the case of the pentaenoic and hexaenoic acids, there is a decrease with the increase in age up to the third age group, and then again increases. Similar to the lepromatous type, the values of total fatty acids are higher than in normal subjects, but the percentage values of the constituting polyenoic acids, other than trienoic, are lower than in normals. Another characteristic point of this form of the disease is that the percentage values of hexaenoic acids are higher than those of pentaenoic acids.

Minor tuberculoid cases.—The third section of Table 1 represents the values of total fatty acids in 100 cc. of serum in minor tuberculoid cases, with the percentage values of their constituting polyenoic fatty acids. In this class also, the value of total fatty acids increase with age, and the percentage values of dienoic acids decrease, showing a similarity to the findings in the major tuberculoid class. In case of trienoic acids, there is a similarity to the major tuberculoid class as well as to the lepromatous type. There is a similar trend as regards the percentage values of tetraenoic, pentaenoic and hexaenoic acids, i.e., they first decrease from the 15-24 years age group to the 25-34 years group, then they increase in the next age group and decrease in the last one. Similar to the above two forms of the disease, values of total fatty acids are higher than those of normal subjects, and lower with the polyenoic acids, except that of trienoic acids. The percentage values of hexaenoic acids are higher than those of pentaenoic acids.

Maculanoesthetic cases.—The values of total fatty acids in 100 cc. of serum of the patients of maculanoesthetic class, with the percentage values of their constituting polyenoic fatty acids, are given in the fourth section of Table 1. In this case also the values of total fatty acids and percentage value of dienoic acids show a trend similar to
that in the lepromatous and tuberculoid types. In case of trienoic and
hexaenoic acids, their values increase with the increase in age up to
the 35-44-years age group, and again decrease in the last age group.
The percentage values of hexaenoic acids are higher than those of
pentaenoic acids. In this form of the disease, also, the values of total
fatty acids are higher and those of the polyenoic acids are lower than
those in normal subjects, the only exception being of trienoic acids.

SUMMARY

The polyenoic fatty acids of the serum of the various types of
leprosy patients of different ages have been determined by the alkali
isomerisation method of Herb and Riemenschneider. In all the forms
of the disease studied, the values of total fatty acids are higher, and
the percentage values of polyenoic fatty acids (other than trienoic
acids) are lower, than those in normal subjects. The values of total
fatty acids increase and the percentage values of dienoic acids decrease
with increase in age. Except for the lepromatous type, the percentage
values of hexaenoic acids are higher than those of pentaenoic acids in
other types. The percentage values of polyenoic acids go on decreasing
from dienoic to hexaenoic acids.

RESUMEN

Por el método de la isomerización alcalina de Herb y Riemenschniedr se han
determinado los ácidos grasos poliinsaturados del suero de las varias formas de leprosis de
distintas edades. En todas las formas de la enfermedad estudiadas, los valores de ácidos
grasos totales son más altos, y los valores porcentuales de los ácidos grasos poliinsaturados
(aparte de los ácidos trienoicos) más bajos que en los sujetos normales. Los valores de los
ácidos grasos totales aumentan y los valores porcentuales de los ácidos diinsaturados
disminuyen al subir la edad. Excepto la forma lepromatosa, los valores porcentuales de los
ácidos hexaenicos son más altos que los de los ácidos pentapentáicos. Los valores porcentuales
de los ácidos poliinsaturados siguen disminuyendo de los ácidos diinsaturados al hexaenoicos.

RESUMÉ

Les acides gras polysaturés présents dans le sérums de malades atteints de
différents types de lépre et d’âges divers ont été déterminés par la méthode d’isomérisa-
tion basique de Herb et Riemenschneider. Dans toutes les formes de la maladie qui ont
été considérées, les valeurs absolues d’acides gras sont plus hautes et les proportions
d’acides gras polysaturés autres que les acides triénoïques sont plus basses que chez les
sujets normaux. Les valeurs absolues d’acides gras augmentent avec l’âge alors que la
proportion d’acides diénoïques décroit. Sauf dans le type lepromateux de l’affection, la
proportion d’acides hexaénoïques est plus élevée que celle d’acides pentaénoïques. Les
pourcentages d’acides polysaturés décroissent progressivement de l’acide diénoïque à
l’acide hexaénoïque.

ACKNOWLEDGMENTS

Thanks are due to Dr. N. Figueredo, superintendent, and Dr. R. G. Navalkar, field
and research officer, of Arvorkh Leprosy Home, Wadala, Bombay, for their help and
cooperation in carrying out this investigation.
REFERENCES

