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Mathematical models of diseases in pop­
ulations, i.e., epidemiometric models, are 
not new. Such an approach was first used 
by Ross (D) for malaria in 1911, and later 
applied to tuberculosis by Reed and Frost 
at the Johns Hopkins School of Hygiene 
and Public Health (1. 1\). Since then, epi­
demiometric models have been, or are pres­
ently being developed for a number of dis­
eases, among them schistosomiasis (0{ ), 
measles, hepatitis, trichomoniasis (3), can­
cer of the cervix, and a few others. 

Lately, it has been realized that such 
models could possibly be applied to lepro­
sy. This would prove invaluable, consider­
ing the urgent need for planning and eval­
uating large-scale mass campaigns present­
ly carried on in many areas of the world. 
Building such a model involves three steps: 
( 1) defining the fundamental quantities, 
or variables, used in the model, (2) decid­
ing the rules of the game and possible 
transitions or flows, and (3) designing a 
way to measure and predict the outcome of 
the model as a function of the values taken 
by the variables, a process that requires 
solving equations. 

In leprosy, the fundamental quantities 
we are using are various classes of people. 
These classes are shown in Table 1, which 
is adapted for leprosy from the model 
developed by Waaler et ai. for tuberculo­
sis (10. 11), with the major exception that no 
stage of infection without disease can be 
identified for leprosy. Criteria for delineat­
ing these classes must be agreed upon and 
standardized in such a manner that the 
classes are mutually exclusive and compara­
ble in various subgroups of the population. 
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The number of classes can be extended 
ad libitum, . to take into account sex, age, 
migration, type of treatment, etc. It is es­
sential, however, to keep the model to a 
manageable level. The multiplication of 
classes will rapidly increase the complexity 
of the ' ma·thematics involved. However, a 
model which is too sophisticated tends to 
copy real life and is not a model any more. 
The problem is similar to the one met in 
epidemiologic studies when deciding on the 
amount of matching needed in controls or 
the number of factors to be adjusted in 
rates. There is an optimum between the 
efficiency of a method and its refinement. 

Moreover, values will have to be given to 
these classes when the time comes to fit the 
model to observational data. We have, 
therefore, no choice but restricting the 
classes to the ones easily gathered from 
data routinely collected in the field. If pos­
sible, provision should be made for diag­
nostic misclassifications. Estimates of sensi­
tivity and specificity of various case-finding 
and diagnostic methods could be calcula­
ted for the various classes whenever rele­
vant. 

The next steps consist of listing the pos­
sible transitions from one class to another, 
and weighing each of the transitions by its 
chance of occurrence. From now on we 
shall refer to the various classes as "states", 
and to the chances of occurrence as "transi­
tion probabilities". To list the transitions 
that are possible, we need a number of 
assumptions. In order to keep the model as 
realistic as possible, these are selected from 
what we know of the epidemiology of the 
disease. We could arbitrarily select the fol­
lowing assumptions: 

1. Leprosy is developed only by ex­
posure to l~prosy patients (in other 
words, the leprosy patient constitutes 
the sole source of infection for lep­
rosy ). 
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2. The reservoir for leprosy is man only. 
3. Leprosy may develop in either one of 

two ways: open leprosy (lepromatous 
and border-line) and closed leprosy 
( tuberculoid and indeterminate). 

4. A tuberculoid patient may transform 
to the lepromatous type, whereas the 
reverse is not possible. 

5. New-born children are free from lep-
rosy. 

6. Everybody is susceptible. 
7. No cure occurs except with treatment. 
8. Cured patients can relapse. 
These assumptions, or rules, are quite 

restrictive and arbitrary. We deliberately 
ignore a number of situations, for example, 
the possible role of healthy or latent carri­
ers (assumption 1) , differential risk by ex­
posure to lepromatous or tuberculoid pa­
tients (assumption 1) , Wade's reversal 
reaction (assumption 4), immunologic and/ 
or genetic mechanisms of resistance" ( as­
sumption 6), and spontaneous healing of 
indeterminate or early tuberculoid cases 
(assumption 7). 

The transitions which are possible be­
tween the various states can now be visual­
ized in a flowgraph (Fig. 1). According to 
the assumptions, the following equations 
may be derived from Table 1 and Fig. 1. 

FIG. 1. Flowgraph of the various states of 
leprosy according to given assumptions. 

T l + I - T t + T t / , + 1+ RTt / t + I 

- C l't / t+ 1 - 13 ,/, + 1 - DT,/, + I 

L, + 1 - Lt + L,/, + 1+ RLt / t + I 

+ 13 t / , + 1- CLt /t + 1- DLt /t + 1 

Ht+ I - N t/t + 1+ CTt /t + 1+ CLt/t + I 

- RT,/, + 1- DM'/' + I - RL, /t + I 

It should be noted that in Table 1 no 
special case is made for cured tuberculoid 
and cured lepromatous patients, whereas 
the relationship given above and the 
Bowgraph make provisions for such classes. 
In the first case, the cured patients are 
assumed to return to the pool of the healthy. 
The decision for adopting one or the other 
of these models depends on the possibility 
of recognizing such states, i.e. , on the fol­
low-up data available. 

FIG. 2. Flowgraph of the various states of 
leprosy, taking into account time lag between 
onset and treatment. 

The graph can be modified to take into 
account a number of additional data, such 
as sex, and treatment duration or lag time 
between case-finding and treatment (Fig. 
2). The transition probabilities, i.e., the 
chance that an individual will stay in a 
given state during an interval of time, or go 
from one state to another, will be drawn 
from observational data in real life 'situa­
tions. In the simplified model given as an 
example, the following epidemiologic in­
dices will be required: (a) incidence ra~e, 
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TA BLE 1. Leprosy. Initial and terminal states at times t and t + 1, and transient states. 

Time t With no-leprosy With tuberculoid With lepromatous Total population 
leprosy leprosy 

Ht T t Lt P t 

Input New-born New tuberculoid New lepromatous New-born 
time t to cases cases 
t + 1 Nt/ t + 1 T t/t + I Lt/t + I Nt/t + I 

Treated tuberculoid Relapsed tuber- Relapse leproma-
cured culoid tous 

CTt/t + I RTt/t ... I RLl/t + I 
Treated leproma- Tuberculoid cases 

tous cured having shifted to 
CLt/t + 1 lepromatous (border-

line transformation) 
Bt/t + 1 

------------------ -------------- - -
Output Deaths persons Deaths tuberculoid Deaths lepromatous Total deaths 
time t to without leprosy cases cases 
t + 1 DH l / t + 1 DTl/t + I DLt/t + 1 D l / t + I 

New tuberculoid Tuberculoid cured Lepromatous cured 
cases 

T tit + 1 CTt /l + I CLt/l + I 
New lepromatous Tuberculoid cases 

cases having shifted to 
Lilt + I lepromatous (border-
Relapse tuberculoid line transformation ) 
RTt/t + I Bt/ t + I 
Relapse lepromatous 
RLt/ t + I 

Time t + 1 With no-leprosy Tuberculoid cases Lepromatous cases Total population 
Ht+ 1 Tt+ 1 Lt+ 1 Pt + I 

TABLE 2. Transition probaMlities (values drau'n from observed epidemiologic rates). 

Incidence t i t + 1 
I 

Cure rate 
C 

Death rate 
D 

Relapse rate 
R 
Borderline rate 
B 

Number of new cases tit + 1 
Population 

Number of cases cured tit + 1 
Cases 

Number of deaths t i t + 1 
Cases 

N umber of cases 
Cured cases 

Number of borderline shifts 
Tuberculoid cases 

tuberculoid Tt/t + tlPt 
lepromatous Lt/t + tlPt 
total (T tit + I + Lt/t + I) IP t 

tuberculoid CT lit + Iff t 
lepromatous CLt/t + tiLt 
total (CT lit + I + CLt/H I) I (T t + Lt) 
tuberculoid DTt/H Ifft 
("" case-fatality rate) 
lepromatous DLl/t + tiLt 
(- case fatality rate) 
healthy DHt/t + t/Ht 
tuberculoid RT t i l + tlCT 011 

lepromatous RLl/t + tlCLo/t 
Bt/t + Ifft 
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(b) birth ratc, (c) cure rate, (d ) death 
rate, (e) relapse rate, and (f) border-line 
transforma tion rate (Table 2). These rates 
would have to be specific for disease-status, 
age, mode of treatment, attendance­
characteristics to treatment, possibly sex, 
and, if relevant, type of leprosy. 

Given the matrix of transition probabili­
ties, it is then possible to develop a set of 
equations whose ' solution yields the subse­
quent state of the whole systems as a 
function of the initial state. A number of 
relationships will have to be drawn be­
tween these parameters. For example, the 
total incidence of cases during a period will 
be related with previous prevalence of lep­
romatous cases in the following manner: 

(T iii + I + L i/i + \) = f (Li-i) 

The study of these functions will often 
require extensive and somewhat elaborate 
mathematics. This is typically a field for a 
pluri-disciplinary team-work approach. It is 
easy to see that such a model, if fitting the 
observational data, has a predictive value. 
It also can be developed into a simulation 
model, by introducing artificially modified 
variables: different treatment coverage, se­
lective treatment according to age or type 
of leprosy, etc. For example, what would 
be the predicted value of prevalence after 
so many years if relapses were left un­
treated and coverage for lepromatous 
adults were increased to a given value? 
Any combination is possible as long as it is 
kept within the framework of the model. 
This is a leprosy campaign in vitro, which 
can be manipulated at will. 

Last, it becomes possible to introduce 
economic data, in order to determine the 
optimal combinations of control measures 
according to cost and efficiency. The model 
thus can be used as a decision-model for 
more rational planning. 

That such an approach can be successful 
is demonstrated by its use in tuberculo­
sis (2. 6.7.8.12). That it could be realized for 
leprosy is another matter. A major difficulty 
is raised by our present inability to distin­
guish leprosy infection from leprosy disease. 
This faces us with the problem of dealing 
with a class of people affected with latent or 
incubating leprosy, who are definitely not 

at risk, but stiil are included for years in the 
no-leprosy class. Other difficulties stem 
from inaccuracy of statistical data and pOor 
diagnostic criteria, among which are incom­
pleteness of census, unspecified time lag 
between onset of disease and diagnosis, 
and confusion of criteria for clinical inactiv­
ity. 

If we are to continue our drive for con­
trolling leprosy through mass ' treatment of 
millions of patients over the world-and 
there is presently no other way-it seems 
high time to try such an approach. It could 
help to optimize our efforts if we could gain 
knowledge from past experience. An at­
tempt to build such a model is under way, 
using for estimates the data from some 
large-scale leprosy campaigns carried on 
for over a decade. 

SUMMARY 

For the last twenty years policy in lepro­
sy control has been based on the somewhat 
simplified assumption that efficient treat­
ment of as many infectious . patients as 
possible will ultimately result in decrease in 
the frequency of the disease to a point 
below an unspecified level at which trans­
mission will be interrupted. 

In the light of what is presently known 
regarding the epidemiology of leprosy, this 
is the only valid assumption for "doing 
things." It seems, however, that the time 
has come for evaluating the long"..term 
effects of large-scale leprosy control activi­
ties. This could help in planning future 
activities. 

Epidemiometric models, i.e., mathemati­
cal models of the dynamics of diseases in 
populations, have been developed for a 
number of infectious or parasitic diseases. 
Using available data from a large scale 
leprosy control program carried on for 16 
years, an attempt is being made to develop 
an epidemiometric model for leprosy. 
Three kinds of models are considered, viz., 
descriptive, simulation and operational. 
The basic epidemiologic assumptions' un­
derlying the building of these models are 
reviewed. Several flow-graphs are pro­
posed, taking into account the available 
data and need for simplification. The various 



39, 2 Lechat: Epidemiometric Approach in Leprosy Control 607 

parameters used, chiefly prevalence, inci­
dence, death rates, and recovery rates, and 
the equations relating these parameters, 
are discussed. 
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