A Light and Electron Microscopic Study of Peripheral Nerves in an Armadillo with Disseminated Leprosy

M. O. Yoshizumi, W. F. Kirchheimer and A. K. Asbury

Recently, Kirchheimer and Storrs (8,9) and Kirchheimer et al (10) have shown that some experimentally infected armadillos (Dasypus novemcinctus Linn.) are highly susceptible to Mycobacterium leprae and develop the disseminated form of the infection. The close resemblance to human lepromatous leprosy has been well established in their reports.

The present communication describes the light and electron microscopic findings in the peripheral nerves of an experimentally infected armadillo with lepromatous leprosy. It is concluded that neural involvement in the armadillo bears a close resemblance to human leprous neuritis of the lepromatous type, thus strengthening the case for developing the nine-banded armadillo into a model for the study of the human disease.

MATERIALS AND METHODS

Armadillo number 34-C, a mature female, was inoculated 16 March 1972 in the skin of the lower abdomen with \(2.0 \times 10^8\) viable leprosy bacilli (mouse foot pad multiplication) obtained from a leproma of a lepromatous nine-banded armadillo. These bacteria had been identified as \(M. leprae\) by their failure to grow on mycobacterial culture media, their pattern of multiplication in mouse foot pads and by positive dopa-oxidase reaction (6,11).

The animal was kept under the usual conditions employed at Carville at an ambient temperature of 24°C and was daily fed a diet consisting of one raw egg, Purina cat chow soaked in water, ground meat, bone meal, raw liver, a cupful of mud, and water ad libitum.

On 13 June 1972, a walnut-sized subcutaneous swelling which gradually had developed on the left thigh was biopsied with a 6 mm skin punch. Histologically and bacteriologically this was shown to be a leproma (1).

Approximately 180 days after infecting this armadillo, an upper respiratory tract disorder became apparent. At that time numerous acid-fast bacilli were present in smears made from its voluminous nasal discharge. The animal was euthanized 196 days after infection and autopsied at once.

\(^{1}\)Received for publication 31 July 1973.

\(^{2}\)M. O. Yoshizumi, M.D., Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Mass. 02114; W. F. Kirchheimer, M.D., Ph.D., Chief, Laboratory Research Branch, USPHS Hospital, Carville, La. 70721; A. K. Asbury, M.D., Professor and Chairman, Department of Neurology, University of Pennsylvania, Philadelphia, Pa. 19104.

\(^{3}\)Address reprint requests to: Dr. M. O. Yoshizumi, Neurology Research Laboratory (180), Veterans Administration Hospital, 4150 Clement M., San Francisco, California 94121.

\(^{4}\)Captured in wild, exact age unknown.
Peripheral nerve specimens were obtained at autopsy of the armadillo from two levels of the ulnar nerve, the median nerve at the forepaw, three levels of the peroneal nerve, and two levels of the posterior tibial nerve, and were fixed in 3% glutaraldehyde in 0.05M phosphate buffer at pH 7.4 for two hours. The nerve specimens were subsequently post-fixed in 2% osmium tetroxide in 0.1M phosphate buffer, dehydrated, and embedded in epoxy plastic blocks. Thick sections of three microns were cut using a glass knife, and stained with Paragon stain for viewing with light microscopy. Ultrathin sections of 600 Å to 700 Å were cut with a diamond knife, stained with 10% uranyl acetate in methanol for four minutes and 0.2% lead citrate solution for one minute. Finally, the stained grids were viewed with a Phillips 300 electron microscope.

RESULTS

General pathology. There were no grossly visible lesions on the body or in the internal organs (aside from the walnut-sized leproma on the left thigh). The histopathologic findings were very similar to those described by Kirchheimer et al (10) and must have resulted from a vascular seeding. There was

TABLE I. Numbers of M. leprae per gm of tissue.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Number of M. leprae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin at site of inoculation</td>
<td>3.6±0.7 × 10^7 (15°)</td>
</tr>
<tr>
<td>Skin (uninoculated)</td>
<td>9.5±0.1 × 10^7 (16°)</td>
</tr>
<tr>
<td>Lymph node (inguinal)</td>
<td>1.9±0.3 × 10^10 (18)</td>
</tr>
<tr>
<td>Leproma (left thigh)</td>
<td>1.5±0.2 × 10^10 (21)</td>
</tr>
<tr>
<td>Liver</td>
<td>1.4±1 × 10^10 (21)</td>
</tr>
<tr>
<td>Spleen</td>
<td>3.5±0.3 × 10^7 (12)</td>
</tr>
</tbody>
</table>

Numbers in parentheses are percentage of solidly staining rods (Morphologic Index).

FIG. 1. Light microscopic view of median nerve from the forepaw of the armadillo showing epineurial blood vessels between two nerve fascicles. There are clusters of macrophages containing darkly staining bacilli (arrows) in a perivascular distribution. Paragon stain (600X).[•]

[•] *Magnifications of figures are given as of the original.*

FIG. 5. Light microscopic view of median nerve from the forepaw of the armadillo showing epineurial blood vessels between two nerve fascicles. There are clusters of macrophages containing darkly staining bacilli (arrows) in a perivascular distribution. Paragon stain (600X).[•]

[•] *Magnifications of figures are given as of the original.*
massive invasion of lymph nodes, spleen, liver, and skin remote from the site of inoculation with M. leprae. In peripheral nerves, one could see, with the light microscope, macrophages stuffed with acid-fast bacteria mainly in the connective tissue between the nerve fascicles. Acid-fast bacilli were also present in peripheral blood macrophages. There were accumulations of macrophages containing enormous numbers of acid-fast rods in the nasal mucosa. There also were accumulations of macrophages with acid-fast bacteria in the mucosa of the larynx. Although there were no grossly recognizable lung lesions, microscopically the animal had a widespread macrophage pneumonitis with numerous acid-fast bacilli in these macrophages. The bacteria recovered from the organs were dopa-oxidase positive, which identifies them as M. leprae (8, 11).

As previously noted (8, 9, 16), the number of leprosy bacilli in the various tissues was much greater than that usually found in human lepromatous leprosy. Data concerning bacterial number per gram of the respective tissues removed at autopsy are shown in Table I. The viability of these bacteria is now being assessed by their ability to multiply in mouse foot pads.

Light microscopy of nerve. Only the median nerve as it entered the forepaw was found to be involved. The nerve trunk is superficially situated in this location. The most obvious feature was the presence of thick...
FIG. 6. Longitudinal section of a fascicle from median nerve. Bacilli (arrows) are present within vacuoles in perineurial cells, and within subperineurial, spindle-shaped macrophages of fibroblasts. Paragon stain (1,000X).

FIG. 7. Longitudinal section of a fascicle in median nerve. There are a large number of bacilli-filled macrophages, clustered between myelinated axons. The macrophages are probably surrounded by an endoneurial blood vessel which is not seen in this plane of section. Paragon stain (900X).

FIG. 8. Transverse section of a whole fascicle of median nerve. A blood vessel surrounded by a few macrophages occupies the center of the fascicle. There is a concentric zone of nerve destruction, fibrous, with a few scattered axons, around the blood vessel. The peripherally situated axons near the perineurium appear intact. Paragon stain (350X).
Yoshizumi et al: Leprous Infection of Armadillo Nerves

Cuffs of heavily bacillated macrophages surrounding blood vessels (Figs. 1-8), particularly veins and venules in the epineurium (Figs. 1-3), and endoneurium (Figs. 7, 8). Macrophages were present not only in the perivascular spaces and adventitia but also insinuated themselves within the media as well (Fig. 4). In some small arteries and arterioles, little perivascular macrophage infiltration was evident, but clusters of bacilli were often found in adventitial and endothelial cells (Fig. 5). Capillaries were often heavily cuffed by macrophages containing large clusters of organisms (Figs. 2, 7).

Sharp contrast in the degree of macrophage cuffing between veins and arteries was frequently observed (Fig. 3). A ring of bacilli-laden macrophages was seen surrounding the venule with virtually no macrophage cuffing of the adjacent arteriole. Clusters of bacilli were present within some perineurial cells and subperineurial cells, the latter identified as macrophages or fibrinblasts (Fig. 6). Aside from the bacillation of some perineurial cells, the perineurium maintained its integrity (Figs. 1, 6).

Foamy cells were scattered within endoneurial spaces between myelinated nerve fibers. Myelinated fibers appeared to be present in normal numbers in most fascicles (Figs. 1, 7), but in one fascicle a broad zone of central clearing with apparent loss of most nerve fibers was observed (Fig. 8). An endoneurial vessel with a cuff of macrophages was centrally placed in this loosely-textured cleared zone, suggesting that nerve fiber destruction had occurred in an ever-widening spread from the vessel. It was not possible to evaluate the state of the unmyelinated nerve fibers by light microscopy.

Electron microscopy of nerve. Examination of the perivascular cuffs of macrophages seen by light microscopy confirmed the presence of large cytoplasmic membrane-bound vacuoles containing bacilli (Figs. 9-12). The cells containing the bacilli-laden vacuoles were easily identifiable as macrophages by their finger-like filopodia, absence of basement membrane, and electron-dense and lightly staining vacuolated bodies in the cytoplasm, presumably representing lysosomal bodies (Fig. 9). The presence of endothelial cell bacillation seen by light microscopy was confirmed by electron microscopy (Fig. 9).

Schwann cell infestation was frequently encountered in a widespread distribution in many fascicles, but was almost exclusively confined to Schwann cells associated with unmyelinated nerve fibers. Bacilli in varying stages of degeneration were contained along with amorphous debris in vacuoles which at times almost completely replaced the entire Schwann cell cytoplasm (Figs. 11, 12). These vacuoles appeared to displace the unmyelinated axons to the periphery of the Schwann cell. A thin rim of Schwann cell cytoplasm separated the contents of the vacuoles from the axons (Figs. 11, 12). Most unmyelinated axons appeared to be intact.

Only rarely were bacilli found within the Schwann cells of myelinated nerves. Myelinated axons appeared to be intact in the...
areas of unmyelinated nerve involvement as well as in other areas. Electron micrographs of the area of nerve destruction illustrated in Figure 8 revealed only rare instances of myelinated nerve involvement, and no unequivocal examples of intra-axonal bacillation were observed.

DISCUSSION

Research and experimentation in leprosy in the past has been limited because of the absence of a valid experimental model representative of the human disease. *M. leprae* still remains to be cultured *in vitro*, and until recently has not been reported to have caused disseminated disease in unaltered experimental animals. The limitations of this type of animal experimental model for the study of human leprosy has been discussed by Kirchheimer and Storrs (7).

In 1971 and 1972, Kirchheimer and Storrs (7) reported disseminated leprosy in some experimentally infected armadillos (*Dasy­pus novemcinctus*, Linn.) without immunosuppression. *M. leprae* was found in clumps of macrophages in biopsies of the dermis.

FIG. 10. Electron micrograph of perineurium in median nerve. Perineural cells have a basement membrane (arrows). Collagen fibers lie between the perineurial cell layers. One perineural cell is widened and contains cytoplasmic vacuoles with bacilli (B). In the right field a darkly staining macrophage is seen in the subperineurial space. The cytoplasm of the macrophage contains several vacuoles filled with electron lucent material and bacilli. The transparent holes surrounding the bacilli are artificial (7,500x).
FIGS. II and 12. Electron micrographs of unmyelinated median nerve in transverse section. Schwann cell cytoplasmic processes and basement membrane surround the unmyelinated axons (a). Microtubules, microfilaments and mitochondria are present within the axoplasm. The cytoplasm of the Schwann cell contains large vacuoles with an electron lucent matrix, cellular debris and bacilli (b). A large area of Schwann cell cytoplasm is occupied by the vacuoles. Figure 11 (7,500 X); Figure 12 (7,000 X).
and dermal peripheral nerves both in inoculated and distant areas. Acid-fast bacilli were found in smears made from the Buffy coat of the blood. Subsequently, Kirchheim er et al. (14) reported extensive tissue involvement in other organs and in the peripheral nerves of experimentally infected armadillos with disseminated (lepromatoid) leprosy.

In this study, the distribution of M. lepra e in the various cellular elements of peripheral nerve from an experimentally infected armadillo closely parallels the distribution of bacilli in peripheral nerve from patients with lepromatous leprosy. In human lepromatous leprosy, the presence of M. leprae in endothelial cells, perineurial cells, endothelial macrophages, Schwann cells of myelinated and unmyelinated axons, in axons, and in macrophages surrounding blood vessels have all been observed by light and electron microscopy, and extensively documented by Khanolkar (1), Dastur (1), Nishiura (2), Inoue (3) and Jhob (4). In our study of the armadillo, M. leprae were found in all of the same cellular elements in the experimentally infected armadillo model. Some features seen in the armadillo such as bacillary invasion of the adventitia and media of blood vessels may also occur in human lepromatous leprosy but has not yet been reported. In addition, the nerve destructive lesion seen in Figure 8 has a perivascular topography. This impressive involvement of blood vessels in the armadillo coupled with the observed bacillemia and endothelial cell bacillation strongly suggests a hematogenous spread of the disease.

It is difficult to explain the observation that Schwann cells of unmyelinated nerve are heavily bacillated while Schwann cells associated with myelinated nerve fibers are relatively free of bacilli. Nonetheless, in our experience, early involvement of unmyelinated nerve fibers and their Schwann cells with relative sparing and later involvement of myelinated nerve fibers and their Schwann cells is common to the human form of leprosy. Schwann cells were parasitized with clusters of bacilli which were in varying stages of morphologic integrity in large vacuoles within the cytoplasm. These lesions bear a close morphological resemblance to the lesions seen in the peripheral nerves of humans with lepromatous leprosy. Finally, no intra-axonal bacilli were observed by light or electron microscopy in the axons of the armadillo. Axonal bacillation in human lepromatous leprosy has been reported by several investigators (2, 11, 12) and confirmed by our own observations in nerves from patients with lepromatous leprosy (14). Intra-axonal bacillation probably represents a late stage phenomenon of lepromatous leprosy which provides an explanation for why it was not seen in the relatively acute infection in the armadillo.

In this light and electron microscopy study there is morphologic similarity between nerve lesions in patients with lepromatous leprosy and in the armadillo which has been experimentally infected with M. leprae, suggesting that the armadillo is a suitable experimental model for the study of peripheral nerve lesions in lepromatous leprosy. Moreover, the armadillo has the advantage over other animal models proposed for similar purposes in that it does not require immunosuppression to facilitate the dissemination of the disease after inoculation. Further study of this model, particularly in terms of the immunological conditions requisite for dissemination of the disease, will do much to clarify the many arcane features of lepromatous leprosy.

SUMMARY

The lesion of peripheral nerve observed in an armadillo which developed lepromatoid leprosy following experimental infection with M. leprae was found to be similar by light and electron microscope examination to the peripheral nerve lesion of human lepromatous leprosy. Bacilli were found primarily within macrophages, endothelial cells, perineurial cells and Schwann cells of unmyelinated fibers. Destruction of nerve tissue appeared to have a perivascular distribution. The pattern of bacillation with predominant involvement of blood vessels suggests hematogenous dissemination of M. leprae in the armadillo. These observations taken together constitute evidence that armadillos with the disseminated form of leprosy are suitable models for the study of the neural lesions of human lepromatous leprosy.

RESUMEN

Se encontró que las lesiones de nervios per-

8. KIRCHHEIMER, W. F. and SANCHEZ, R. M. Leprosy - susceptibility testing of armadillos. II. Late cell and bacterial responses at the inoculation site of living leprosy bacilli in "resistant" armadillos. Microbb 5 (1973) 241-246.

12. NISHIURA, M., HARADA, N. and IMADA, T. Electron microscopy of ultrathin sections of lepromatous peripheral nerves. Int. J. Lepr. 23 (1957) 323-328.
