CORRESPONDENCE

This department is for the publication of informal communications that are of interest because they are informative and stimulating, and for the discussion of controversial matters. The mandate of this JOURNAL is to disseminate information relating to leprosy in particular and also other mycobacterial diseases. Dissident comment or interpretation on published research is of course valid but personality attacks on individuals would seem unnecessary. Political comments, valid or not, also are unwelcome. They might result in interference with the distribution of the JOURNAL and thus interfere with its prime purpose.

Criteria for Establishing \(\alpha \)-Diphenoloxidase Activity

To the Editor:

Dr. Skinnes (L.I. 45 [1977] 187) states that his alleged \(M. \) leprae cultures oxidized DOPA, and questions the specificity of \(\alpha \)-diphenoloxidase in \(M. \) leprae. Dr. Skinnes did not carry out the reaction according to our procedure for testing enzymatic oxidation of DOPA by mycobacteria (W. F. Kirchheimer and K. Prabhakaran, L.I. 36 [1968] 162-165). DOPA would undergo auto-oxidation in the presence of metal ions, on prolonged incubation, at higher temperatures and at alkaline pH. What Dr. Skinnes observes is nonenzymatic oxidation of DOPA stimulated by metal ions in the culture medium (K. Prabhakaran. Lepr. India 48 [1976] 208-271). It may be mentioned that, not only DOPA, but many biochemicals used in enzyme chemistry are highly unstable substances. That is why they have to be stored in the cold, and the experimental conditions properly controlled to exclude nonenzymatic degradation of the substances. All substrates undergo slow degradation; what enzymes do is to accelerate the process by their catalytic action. What is important is to find out whether the bacteria by themselves can convert DOPA to quinone enzymatically. Our criteria for establishing \(\alpha \)-diphenoloxidase activity are as follows.

1. We purify the bacteria used in our reactions to remove host tissue elements or culture media components that might stimulate auto-oxidation of the substrates. We carry out the reaction at pH 6.8 and at 37°C, for a duration of 30-120 minutes. When fresh DOPA solution is used, there is very little auto-oxidation of the substrate under these conditions, while there is rapid enzymatic oxidation. This was established by determining the ultraviolet spectrum of DOPA before and after incubation, and by comparing oxygen-uptake with and without added enzyme in the incubation mixture.

2. \(M. \) leprae preparations do not lose \(\alpha \)-diphenoloxidase activity after treatment with alkali, proteolytic enzymes and acetone and ether, indicating that superficially adsorbed materials are not responsible for the reaction.

3. When \(M. \) leprae is heated, it loses the activity, proving the enzymic nature of the reaction, and excluding stimulation by inorganic ions.

4. The enzyme activity of \(M. \) leprae can be released from the bacterial particles as a copper-containing protein, by detergent treatment.

5. The \(\alpha \)-diphenoloxidase of the bacilli was demonstrated using a variety of techniques: measuring oxygen-uptake manometrically and polarographically, determining the quinones produced spectrophotometrically, and assaying the labeled water formed with tritiated DOPA as substrate.

6. The enzyme is present not only in the bacilli separated from skin nodules, but also from spleen, liver, testes and lymph nodes which do not contain \(\alpha \)-diphenoloxidase.

7. Mammalian \(\alpha \)-diphenoloxidase is relatively specific for L-DOPA and has no activ-
M. leprae oxidizes both L- and D-DOPA at the same rate, and acts on a variety of di­phenols including epinephrine and norepine­phrine.

8. M. leprae retains o-diphenoloxidase ac­tivity in the passage of the bacillus from the human to the animal (mouse as well as arma­dillo) host, indicating that it is a constitutive enzyme of the bacillus.

Precautions.

1. M. leprae suspensions used in enzyme assays have to be obtained from fresh tissues or tissues kept at 0°C or below, to avoid de­naturation of o-diphenoloxidase. The entire separation procedure also has to be carried out in the cold. If the bacterial preparations have little activity to start with, both heated and unheated samples would give similar results. Denatured enzymes often retain a residual activity.

2. Many tissues contain inhibitors of o­diphenoloxidase. As such, testing the enzyme activity in crude homogenates of leproma­tous tissues would yield no definitive results. Adequate amounts of purified organisms have to be used.

3. It is important to have heated samples as controls. We tested several cultivable mycobacteria as well as M. lepraemurium (separated from mouse spleen), and two un­identified mycobacteria (obtained from the liver and skin tissues of two other species of mammals) in presence of added DOPA, both heated and unheated suspensions of these bacteria gave similar results, proving that the organisms have no enzyme activity.

4. The mere demonstration of any enzyme in a host-derived organism is of little signifi­cance, especially if the enzyme is ubiquitously present in the host tissues as well. Acid­fast staining alone is a poor criterion for ex­cluding host-tissue materials adsorbed on the bacilli. It has to be established that the en­zyme is an inherent property of the organism itself.

Anyone who is interested is welcome to visit our laboratory. We would be willing to demonstrate that metabolically active prepa­rations of M. leprae convert DOPA to quinone enzymatically and that this activity is distinct from mammalian tyrosinase.

— K. Prabhakaran, Ph.D.
U.S. Public Health Service Hospital
Carville, LA 70721

To THE EDITOR:

The editorial “Effect of Malnutrition on Leprosy” (IJL, 44 [1976] 374) contains this statement: “There is, it is true, no evidence that any specific or group of dietary substance is promotive of leprous inflammation” Likewise, the following statement is quoted in an editorial appearing elsewhere (Lepr. Rev. 46 [1975] 5): “No direct link between malnutrition and leprosy has been convincingly demonstrated.”

These statements are not true. Bergel, in more than 20 publications issued during the last 30 years, has demonstrated that a pro­oxidant diet, i.e., a diet with low content of vitamin E and high content of fatty acids, is promotive of leprous inflammation. The work of Bergel was confirmed by Mason and Dju (Symposium on Research in Leprosy, Leonard Wood Memorial-Johns Hopkins University, Baltimore, 8 May 1961, p 264).

We feel that the relationship, leprosy autooxidation of lipids, is the most im­portant known factor in the pathogenesis of leprosy and it can be used as a starting point for experimental work dealing with prev­ention and treatment of leprosy. Unfortunate­ly, leprologists are not very familiar with the chemistry of autooxidation, namely, with antioxidants, prooxidants, metal deactiva­tors, free radicals, chain reactions, hydro­peroxides, polymerization, copolymerization, tocopherols, endoperoxides, superoxides, etc.

— Prof. Dr. Meny Bergel

Medical Director
Instituto de Investigaciones Leprologicas
E. Zeballos 3411
Rosario, Argentina