Correspondence

Macrophage Microbicidal Mechanism

TO THE EDITOR:

Jolly and Mahadevan have attempted to study the role of reactive oxygen intermediates in the intracellular killing of *Mycobacterium leprae* in human macrophages (³). The authors have reported 89 nmol of H_2O_2 and 0.3 nmol of superoxide (O_2^-) in the macrophages of lepromatous leprosy patients.

During phagocytosis, macrophages produce substantial quantities of O_2^- and H_2O_2 as shown by the following reactions: Superoxide is formed by the one electron reduction of oxygen: $2O_2 + \text{NADPH} \rightarrow O_2^ + \text{NADP}^+ + \text{H}^+$. Superoxide is converted to H_2O_2 by the reaction $2O_2 + 2\text{H}^+ \rightarrow O_2^ + H_2O_2$. This reaction is catalyzed by the enzyme superoxide dismutase.

Considering the fact that all of the oxygen taken up during the respiratory burst is converted to O_2^- , and that 80% of this O_2^- is converted to H_2O_2 by dismutation (¹), it is difficult to understand from the paper (³) how 89 nmol H_2O_2 could be accounted for when only 0.3 nmol O_2^- was produced (Table 1).

However, there is a report which claims a direct conversion of molecular oxygen to H_2O_2 (²), as shown by the reaction: NADH + O_2 + $H^+ \rightarrow H_2O_2$ + NAD⁺. This has been reported in guinea-pig neutrophils *in vitro*. It has also been argued that the rather high Km (0.4 mM) for NADH observed *in vitro* for this enzyme militates against significant activity during phagocytosis (²).

Under these circumstances, more confirmation is needed regarding the role of superoxide and H_2O_2 in the killing of *M. lep-rae* by human macrophages.

-Raji Swamy, M.D., Ph.D.

Department of Immunology Tuberculosis Research Centre Spur Tank Road Chetput, Madras 600031, India

REFERENCES

- BABIOR, B. M. Oxygen dependent microbial killing by phagocytes. N. Engl. J. Med. 298 (1978) 659– 668.
- BADWEY, J. A. and KARNAVSKY, M. L. Active oxygen species of the functions of phagocytic leukocytes. Ann. Rev. Biochem. 49 (1980) 695–726.
- JOLLY, M. and MAHADEVAN, P. R. Reactive oxygen intermediates inactivate *Mycobacterium leprae* in the phagocytes from human peripheral blood. Int. J. Lepr. 57 (1989) 483–491.

58, 2